Global well-posedness of some high-order focusing semilinear evolution equations with exponential nonlinearity
نویسندگان
چکیده
منابع مشابه
H-global well-posedness for semilinear wave equations
We consider the Cauchy problem for semilinear wave equations in Rn with n 3. Making use of Bourgain’s method in conjunction with the endpoint Strichartz estimates of Keel and Tao, we establish the Hs-global well-posedness with s < 1 of the Cauchy problem for the semilinear wave equation. In doing so a number of nonlinear a priori estimates is established in the framework of Besov spaces. Our me...
متن کاملOn blowup for semilinear wave equations with a focusing nonlinearity
In this paper we report on numerical studies of formation of singularities for the semilinear wave equations with a focusing power nonlinearity utt−∆u = u in three space dimensions. We show that for generic large initial data that lead to singularities, the spatial pattern of blowup can be described in terms of linearized perturbations about the fundamental selfsimilar (homogeneous in space) so...
متن کاملA Semilinear Fourth Order Elliptic Problem with Exponential Nonlinearity
We study a semilinear fourth order elliptic problem with exponential nonlinearity. Motivated by a question raised in [Li], we partially extend known results for the corresponding second order problem. Several new difficulties arise and many problems still remain to be solved. We list the ones we feel particularly interesting in the final section. Mathematics Subject Classification: 35J65; 35J40.
متن کاملHigh-order splitting schemes for semilinear evolution equations
We first derive necessary and sufficient stiff order conditions, up to order four, for exponential splitting schemes applied to semilinear evolution equations. The main idea is to identify the local splitting error as a sum of quadrature errors. The order conditions of the quadrature rules then yield the stiff order conditions in an explicit fashion, similarly to that of Runge–Kutta schemes. Fu...
متن کاملGlobal Well-Posedness for Schrödinger Equations with Derivative
We prove that the 1D Schrödinger equation with derivative in the nonlinear term is globally well-posed in H s , for s > 2/3 for small L 2 data. The result follows from an application of the " I-method ". This method allows to define a modification of the energy norm H 1 that is " almost conserved " and can be used to perform an iteration argument. We also remark that the same argument can be us...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Nonlinear Analysis
سال: 2018
ISSN: 2191-9496,2191-950X
DOI: 10.1515/anona-2015-0108